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It is proved that the free energy of a disordered system described by a 
quadratic form in  Bose or Fermi operators with random coefficients, 
calculated in the simplest approximation for the associated eigenvalue 
problem, gives the upper (Bose case) and lower (Fermi case) bounds for 
t h e  exact free energy. 
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The grea t  var ie ty  o f  exci ta t ions  in d i sordered  crystals  m a y  be descr ibed with  
sufficient accuracy  in te rms o f  Hami l ton ians  which are  s imply quadra t i c  
forms in Bose or  F e r m i  opera to r s  wi th  r a n d o m  coefficients. To this class 
there  be long e lect ron systems, phonons ,  excitons,  and  magnons  as well as 
some one-d imens iona l  magne t ic  systems such as r a n d o m  X Y  c ha in s?  

In  spite o f  the  appa ren t  s implici ty  o f  these Hami l ton ians ,  the spect ra l  
p rob lems  caused by  r andomness  are  by  no  means  tr ivial  and  have been 
intensively invest igated by  m a n y  au thors  (see, e.g., Ref. 2 for  a compre -  
hensive review). 

In  this note  we ob ta in  an  es t imate  for  the  free energy of  these systems. 
The  p r o o f  is based  on the concavi ty  p rope r ty  o f  the  funct ion A ~ In det  A, 

ci In de t  A ~') ~< In de t  ~ c,A~~ c, /> 0, ~ c, = 1 (1) 
i t ( 

where A <~ are  the posi t ive-defini te  N x N matr ices.  The  inequal i ty  (1) fol- 
lows direct ly  f rom the Minkowsk i  inequal i ty  for  determinants58> 
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2 With spin Hamiltonian unitarily equivalent (Jordan-Wigner transformation) to some 
quadratic form in Fermi operators, ca) 
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Lemma. Let us consider the class of Hamiltonians 

H~(S `~ R <')) = ~_, ,.,~,,,,~,~"'" +",,, + �89 ~ ,  ,~.a,--~:~'('): +.,,., + + h.c.), 
r a,B 
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c~,fl = 1,..., N 

(2) 

where a~ + and a~ are Bose and Fermi operators, and S ") and R (~) are real 
matrices with obvious symmetry properties: 

So~ S.~ { R ~  (Bose case) 
~ = ~,  R~  = - R ~ .  (Fermi case) (3) 

which, for the Bose case, satisfy the additional conditions: 

S ~i~ + R ~*) and S ~~ - R ~) both positive definite, [S ~*), R ~~ = 0 (4) 

Then if we introduce some probability distribution on this class and 
define the mean free energy FN as 

F~ -- - f i - l{ ln  Tr e x p [ - f l H u ( S  ~'~, R(i))]}Av, 3 = 1]kT (5) 

where {'"}AV is the average with a given distribution function, the following 
inequalities hold: 

FN ~< --3 Tr(S~i))Av + fl-1 In det 2 sinh{�89176 (Bose) (6) 

FN t> �89 Tr(S~~ - fl- 1 In det 2 cosh{�89176 (Fermi) (7) 

The matrices D C~ = (S ~ + R~~ ~ - R ~~ in (7) and (8) are at least 
positive semidefinite for the Fermi case and positive definite for the Bose 
case and their averages (D~~ and quadratic roots have the same proper- 
ties. 

ProoL The above assumptions guarantee that the quadratic forms (2) 
describe for any (i) the well-defined elementary excitations, i.e., may be 
transformed by the Bogoliubov canonical (u, v) transformation into 

= E'oS, + (8) 
? 

where ~(o > 0 are determined from the eigenvalue problem 

and 

E o ( % = - � 8 9 1 7 6 1 6 2  t)) 

ECo',).N= �89 S ~ ~  ~ ~ ' )  

(Bose case) (10) 

(Fermi case) (11) 
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The formula for the ground-state energy Eo(~)N can be obtained simply 
in the Fermi case from the invariance of the trace under (u, v) transforma- 
tion. For the Bose case we can obtain it from the standard expression 
E(~ -~v,~ .(~l,,(o ~ (see, e.g., Ref. 4), where u.v and v~v are the coeffi- 
cients of the (u, v) transformation, if we derive, taking into account the 
corresponding orthonormality relations, the following intermediate result: 

-urn E(-'~ = �89 ~ ,(vo _ �89 ~_, ,.-c~,or,~-,vf'"~ r176 _ ~,or,v,~,,"~ r (12) 
1/ g v ) '  

For diagonal S ('~ the formula (10) is obvious; it holds in general due 
to the invariance of the orthonormality relations under the orthogonal 
transformation diagonalizing the symmetric matrix S "). 

Now, after simple algebra, we can write the exact free energy in the 
form 

FN = -�89 S(t))A g -]- fl-l[ln det 2 sinh(�89176 (Bose) (13) 

FN = �89 S(~ --/3-1[In det 2 cosh(�89 (Fermi) (14) 

where D <~ = (D(i~) ~/2. Expanding the functions sinh and cosh in (13) and 
(14) in infinite products and taking the logarithm, we obtain 

~D<') 1 
/ 32 D(~2 L_, In det I (15) .In det 2 sinh ~ = ~ In det + ~ = x + -~--T~] 

~O ('~ ,~ ( f ~o('~ ] 
In det 2 cosh--- F = N l n 2 +  L lndet I +  (16) (2/~ T T))2~r z ] \ / r  

Finally, applying the inequality (1) term by term to the above expan- 
sions, we complete the proof of (6) and (7). 

C o m m e n t s .  The bounds obtained correspond to the simplest approxi- 
mation in the eigenvalue problem, when we replace D (~2 by (D(t)2)A v. In 
practice, this matrix can be easily calculated and diagonalized (as a rule, 
after averaging we restore the crystal symmetry). 

The conditions (4) imposed on Bose systems seem, at first sight, to be 
very restrictive. However, the corresponding class of Hamiltonians includes, 
e.g., all disordered phonon Hamiltonians in the harmonic approximation 
with dynamical matrix equivalent to D (~ 

For Fermi systems, when HN is a bounded operator, the upper bound 
for the free energy can be easily obtained by taking into account the con- 
vexity property of the function A --~ In Tr eA, (5~ which leads to 

F~ <~ Fn[H~((S"~).~v, (R~)Av) ] (17) 

and corresponds to the so-called "virtual crystal approximation" in the 
theory of disordered systems. 
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A similar argument cannot be applied to the Bose system when HN is 
unbounded. Instead, we have our upper bound (6). 

The limit T = 0 can be taken in (6) and (7), which gives the corresponding 
estimates for the ground-state energy. 

On the other hand, the same result may be obtained directly if we 
exploit the known integral identity 

Tr[(DC~ 1/2] = ~ dx x -a/2 In det(I  + x D  ~i~2) (18) 

and then apply the basic inequality (1). 
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